NMR of large protein systems: Solid state and dynamic nuclear polarization

Sascha Lange, Leibniz-Institut für Molekulare Pharmakologie (FMP)

Summer School 2014

September 11-12, 2014 Freie Universität Berlin

solution-state NMR

requires rapid reorientation of soluble biomolecules

X-ray crystallography

requires high-quality single crystal...

solid-state NMR

no need for large well-ordered crystals or highly-purified proteins works for immobilised proteins, no inherent limitation on complex size

why is anisotropy difficult?

<u>liquids</u>: rapid random tumbling averages anisotropic chemical shifts and couplings
→ small lines, high signal!

<u>solids</u>: no tumbling, interactions depend on orientation of the single molecules (anisotropic) \rightarrow very broad lines, low signal!

anisotropic interactions lead to massive line broadening!

why is anisotropy difficult?

anisotropy of

- \rightarrow heteronuclear dipolar interaction
- \rightarrow homonuclear dipolar interactions
- \rightarrow chemical shift anisotropy

anisotropic interactions lead to massive line broadening!

 \rightarrow heteronuclear dipolar interaction

$$H_{IS} = -d(3\cos^2\theta - 1)I_zS_z$$

$$d = \left(\frac{\mu_0}{4\pi}\right) \frac{\hbar \gamma_I \gamma_S}{r_{IS}^3}$$

\rightarrow homonuclear dipolar interactions

$$H_{II} = -d \frac{1}{2} \left(3\cos^2 \theta - 1 \right) \left[2I_{1z}I_{2z} - \frac{1}{2} \left(I_1^+ I_2^- + I_1^- I_2^+ \right) \right]$$

\rightarrow Chemical Shift Anisotropy

\rightarrow Chemical Shift Anisotropy

$$H_{CS} = \gamma B_0 I_z \left[\delta_{iso} + \frac{1}{2} \delta_{aniso} \left(3\cos^2 \theta - 1 \right) \right]$$

$$H_{II} = -d \frac{1}{2} \left(3\cos^2 \theta - 1 \right) \left[2I_{1z}I_{2z} - \frac{1}{2} \left(I_1^+ I_2^- + I_1^- I_2^+ \right) \right]$$

$$H_{CS} = \gamma B_0 I_z \left[\delta_{iso} + \frac{1}{2} \delta_{aniso} \left(3\cos^2 \theta - 1 \right) \right]$$

3cos²54.7-1=0

54.7 = the magic angle!

9

54.7 = the magic angle!

...but the information is NOT LOST FOEVER!

(more information at 5pm by Barth-Jan van Rossum)

Maximum spinning frequency depends on rotor diameter

some typical diameters:

4.0 mm	\rightarrow	15 kHz	(1,400,000 × g)
3.2 mm	\rightarrow	25 kHz	(2,700,000 × g)
2.5 mm	\rightarrow	35 kHz	(3,500,000 x g)

(80.000 x *g*)...

Solid-state NMR is brute force...

'no inherent limitation on complex size': What does it mean?

low sensitivity is one of the biggest bottlenecks in solid state NMR

$$\frac{N_{\beta}}{N_{\alpha}} = e^{\frac{-\Delta E}{kT}} = e^{\frac{-h\nu_0}{kT}} \qquad \Delta E = \frac{\gamma h B_0}{2\pi}$$

sensitivity depends on:

- \rightarrow gyromagnetic ratio γ of the nuclei \rightarrow the **higher** the better (e.g. ¹H vs. ¹³C)
- \rightarrow energy difference (i.e. magnetic field strength B₀) \rightarrow the stronger the better
- \rightarrow sample temperature \rightarrow the cooler the better

Why is (solid state) NMR so insensitive

Small net magnetic moment (polarization) aligned with B_z

$$\frac{N_{\beta}}{N_{\alpha}} = e^{\frac{-\Delta E}{kT}} = e^{\frac{-h\nu_0}{kT}}$$

1

 $\Delta E = hv = 5.6 \times 10^{-25} J$ $h = 6.626 \times 10^{-34} Js$ $k_b T = 4.1 \times 10^{-21} J$ $k_b = 1.381 \times 10^{-23} JK^{-1}$

10,000 ¹H spins up (I_z is aligned with B_z) 9,999 ¹H spins down (I_z is aligned against B_z)

$$\frac{N_{\beta}}{N_{\alpha}} = 1.0001$$

DNP = transfer of the high electron polarization to nearby nuclei

The DNP-Spectrometer

needed amount **5 nmol** / 25 μ l (**0.2 mM**)

The DNP-Spectrometer

Cooling Cabinet

DNP-Mechanism: 1. The Solid Effect

DNP-Mechanism: 1. The Solid Effect

DNP-Mechanism: 2. The Cross Effect

DNP-Mechanism: 2. The Cross Effect

two main drawbacks of DNP

- \rightarrow inhomogeneous broadening due to cooling
- \rightarrow homogeneous broadening due to addition of radicals

Modell system: SH3

26.09.2014

... and we can determine coalescence temperatures!

26.09.2014 Modell system: SH3

two main drawbacks of DNP

- \rightarrow inhomogeneous broadening due to cooling
- \rightarrow homogeneous broadening due to addition of radicals

the radical is causing homogeneous line broadening

the radical is shortening effectively CP times

TOTAPOL leads to a reduction of detectable nuclei:

DNP as a Tool for Structural Biology, ACh- Receptor

Neurotoxin II (Naja naja oxiana; NOR1) on nAChR (Torpedo californica)

nicotinic AChR: ionotropic (ligand gated ion-channels)

parasympathetic autonomic nervous system, neuromuscular junction

what has a second secon

inactivation of TOTAPOL in close proximity

Linden, Oschkinat et al. J. Am. Chem. Soc. 2011

inactivation of TOTAPOL close proximity can help

DNP spectrum ssNMR spectrum

just 6% of the measurement time needed

30-

40

 $^{13}_{
m C}$

ю

50

60-

180

170

70

60

 $\leftarrow \delta^{-13}C$

10 days _____ 10 hours

40

50

30

20

DNP as a Tool for Structural Biology, RNCs

Bhushan, Beckmann et al. Nature Structural & Molecular Biology (2010)

we investigated the folding state of a signal peptide within the ribosomal exit tunnel \rightarrow is there one specific conformation of the nascent chain? \rightarrow what is the helix content?

the ribosome is 10.000 times bigger compared to the NC

10 nmol nascent chain = ca. **37 μg**

> 10 nmol ribosomes = ca. **25mg**

9/26/2014

DNP as a Tool for Structural Biology, RNCs

¹MKKIWLALAG LVLAFSASAA²⁰ ²¹FATPVWISQ AQGIRSGP³⁷

there are lot of barriers ...

- line broadening is a very big issue (DNP is still blobby)
- short CP times prevent multi-dimensional experiments
- de novo assignements ar nearly impossible
- cryo hardware is difficult to maintain

... and construction sites

- new radicals with longer electron relaxation
- deuteration of samples
- sample preparation (glas matrix)
- new systems (more suitable)
- coupling of the radical

•••

