

Protein NMR spectroscopy

Jana Sticht AG Freund, FU Berlin 11.09.2014

Applications of protein NMR

structural information

protein-ligand interactions

NMR of proteins in solution

dynamic information

What is special about proteins?

• they are big – often too big for standard NMR approaches

- problem: signal overlap
- overcome by isotope labeling of proteins expressed in bacteria in combination with more dimensional spectra (nobel prize for Kurt Wüthrich 2002)

¹H-¹⁵N-HSQC spectrum – the "protein fingerprint"

the HSQC (heteronuclear single quantum coherence) spectrum correlates covalently linked spins by magnetization transfer via J-coupling (J_{NH} =92Hz)

¹H-¹⁵N-HSQC spectrum – the "protein fingerprint"

- less peaks / better resolution
- one peak per amide-group
- roughly one peak per residue (fingerprint!!)

¹H-¹⁵N-HSQC of a 10kD protein

- peak position (chemical shift) contains structural information
- peak line-width delivers information on protein dynamics

which peak belongs to which residue? assignment needed!

HNCO / HN(CA)CO - sequential assignment

HNCO

signal for C' of NH(i-1)

HN(CA)CO

Freie Universität

Berlin

2

signal for C' of NH(i) and NH(i-1)

HNCO / HN(CA)CO sequential assignment

HNCO signal for C' of NH(i-1)

O

i-1

HNCA / HN(CO)CA sequential assignment

assigned HSQC spectrum

available now:

- assignment of NH signals in HSQC
- backbone C α and CO assignments

how to access this information

Mapping protein-ligand interactions

δ¹H [ppm]

Q lle13

"slow exchange" two distinct resonances

 $\delta^{1}H$ [ppm]

"fast exchange" one sharp average resonance

protein-ligand interactions

HSQC titrations allow to define binding sites and K_D values of protein-ligand interactions

how to access this information

dynamic information

collect structural information: secondary structure from backbone shifts

- C α , C β , CO assignments already contain secondary structure information
- C α chemical shifts of α -helical or β -sheet regions differ from random coil values

 $\Delta \delta C_{\alpha} = \delta C_{\alpha} (measured) - \delta C_{\alpha} (random \ coil)$

collect structural information: secondary structure from backbone shifts

two published crystal structures – which is present in solution?

protein sequence

collect structural restraints: torsion angle

Karplus correlation: ${}^{3}J(\varphi) = A \cos^{2}(\varphi - 60) - B \cos(\varphi - 60) + C$

- quantitative J-correlation methods allow to determine ${}^{3}J(H^{N}-H^{\alpha})$ coupling constants
- cross-peak intensity ratio is correlated with coupling constant

collect structural information: side-chain assignments

collect structural restraints: NOE secondary structure and distance information

NOE (nuclear Overhauser effect) is due to through-space dipolar interaction between spins in spatial vicinity (<5Å; NOE intensity $\propto \frac{1}{r^6}$)

collect structural restraints: NOE secondary structure and distance information

NOE cross-peak intensity correlates with

distance between atoms

strong	1.8-2.7 Å
medium	1.8-3.3 Å
weak	1.8-5.0 Å

collect structural restraints: NOE secondary structure and distance information

Structure determination

how to access this information

protein dynamics: peak line-width and relaxation

relaxation is dominated by rotational motion of the molecule:

➔ the peak line-width carries information on rotational motion of the molecule and internal dynamics

dynamics: quantitative information

➔ qualitative information:

broad signals indicate oligomerization, protein-protein interaction, conformational exchange

➔ quantitative information:

regions of the protein displaying additional fast internal motion (τ_i , ps-ns) or conformational exchange (R_{ex} , μ s-ms) can be identified from relaxation rate measurements

relaxation time measurements

transverse (T_2) relaxation time

Inversion recovery to measure T₁

CPMG spin-echo to measure T₂

dynamics: quantitative information

¹H-¹⁵N T₁, T₂, and hetNOE measurements allow to deduce protein backbone flexibility

labeling strategies in big proteins

¹H¹⁵N-TROSY-HSQC of deuterated 46kD protein

labeling strategies in big proteins

labeling strategies in big proteins

how to access this information

structural information

protein-ligand interactions

dynamic information

Acknowledgements

Marek Wieczorek Zeina El Habre Fabian Gerth Stefan Klippel Dr. Andreas Schlundt Prof. Christian Freund AG Proteinbiochemie, FU Berlin

Dr. Andreas Schäfer Bettina Zeisig NMR facility, FU Berlin

Dr. Peter Schmieder Monika Beerbaum NMR facility, FMP Berlin