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Applications of protein NMR 

• dynamic information 

NMR of proteins 
in solution 

protein-ligand interactions 

structural information 
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What is special about proteins?  

• they are big – often too big for standard NMR approaches 

atoms in  
proteins  
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   d1H [ppm] 

methyl groups 

aliphatic 

Hα 

aromatic 

amide region 

10kD protein 

• problem: signal overlap  
 overcome by isotope labeling of proteins expressed in bacteria  

in combination with more dimensional spectra  
(nobel prize for Kurt Wüthrich 2002) 

15NH4Cl 

13C-glucose 
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the HSQC (heteronuclear single quantum coherence) 
spectrum correlates covalently linked spins by 
magnetization transfer via J-coupling (JNH=92Hz) 

magnetization transfer 15N to 1H  

15N chemical 
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1H-15N-HSQC spectrum – 
the “protein fingerprint” 

magnetization transfer 1H to 15N  
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1H-15N-HSQC spectrum – 
the “protein fingerprint” 

• less peaks / better resolution 
• one peak per amide-group 
 roughly one peak per residue (fingerprint!!) 
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1H-15N-HSQC of a 10kD protein 
 

 peak position (chemical shift) contains 
structural information 

 peak line-width delivers information on protein 
dynamics 

which peak belongs to which residue? 
assignment needed! 
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HNCO / HN(CA)CO - sequential assignment 
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HNCO / HN(CA)CO sequential assignment 
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HNCA / HN(CO)CA sequential assignment 
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very likely a glycine! 

-x-Gly- 

-x-Val/Ile/Thr-x-x-Gly- 

-14Leu-15Thr-16Ala-17Ser-18Gly- 
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assigned HSQC spectrum 

available now: 
• assignment of NH signals in HSQC 
• backbone Ca and CO assignments 
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how to access this information 

• dynamic information 

protein-ligand interactions 

structural information 
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1H-15N-HSQC spectra: 

one signal per NH-group 
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Mapping protein-ligand interactions 
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“fast exchange” 

one sharp average resonance 
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“slow exchange” 

two distinct resonances 
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protein-ligand interactions 

HSQC titrations allow to define 
binding sites and KD values of 
protein-ligand interactions 
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how to access this information 

• dynamic information 

solution NMR  

protein-ligand interactions 

structural information 
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collect structural information: 
secondary structure from backbone shifts 

• Ca, Cb, CO assignments already contain secondary structure information 

• Ca chemical shifts of a-helical or b-sheet regions differ from random coil values  
∆𝛿𝐶𝛼 = 𝛿𝐶𝛼 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝛿𝐶𝛼 𝑟𝑎𝑛𝑑𝑜𝑚 𝑐𝑜𝑖𝑙  
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secondary structure derived  
from crystal structure 
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two published crystal 
structures – which is 
present in solution? 
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collect structural information: 
secondary structure from backbone shifts 
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collect structural restraints: torsion angle 

• quantitative J-correlation methods allow to determine 3J(HN-Ha) coupling constants 

• cross-peak intensity ratio is correlated with coupling constant 

Karplus correlation: 𝐽 𝜑 = 𝐴 𝑐𝑜𝑠2 𝜑 − 60 − 𝐵 cos 𝜑 − 60 +3 𝐶  
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collect structural information: 
side-chain assignments 

2D TOCSY  
(total correlation spectroscopy) 
correlation of entire spin system 

3D TOCSY-HSQC  

for bigger proteins 
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collect structural restraints: 

NOE secondary structure and distance information 
NOE (nuclear Overhauser effect) is due to through-space dipolar interaction between spins in 

spatial vicinity (<5Å; NOE intensity ∝
1

𝑟6) 

2D NOESY 

t1 tm 1H 

for bigger proteins 

3D 1H-15N-NOESY-HSQC 
intra- or intermolecular 

cross-peaks 
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NOE cross-peak intensity correlates with 
distance between atoms 

strong 1.8-2.7 Å 
medium 1.8-3.3 Å 
weak 1.8-5.0 Å 

collect structural restraints: 

NOE secondary structure and distance information 
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collect structural restraints: 

NOE secondary structure and distance information 
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Structure determination 

GYF-Smy2 

(unpublished) 

F 

Y 

+180 °  -180 °  

+180 °  

Ramachandran Plot 
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how to access this information 

• dynamic information 

solution NMR  

protein-ligand interactions 

structural information 
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protein dynamics: 
peak line-width and relaxation 

relaxation is dominated by rotational motion of the molecule: 
 

small protein: 

long FID                    sharp signal 

big protein: 

short FID broad signal 

 the peak line-width carries information on rotational motion of the molecule and 
internal dynamics 

 I(t) = I0 ei(wt) e-Rt  

signal intensity (I) oscillating  
with Larmor frequency 

exponential decay 
of the signal dominated 
by relaxation rate R2 
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dynamics: 
quantitative information 

 qualitative information: 
broad signals indicate oligomerization,  
protein-protein interaction, conformational exchange 

N 
H 

 quantitative information: 
regions of the protein displaying additional fast internal motion (ti, ps-ns)  
or conformational exchange (Rex, µs-ms) can be identified from relaxation 
rate measurements 

ti 
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relaxation time measurements 
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Mz,eq 

 Mz(t)  = Mz,eq - (Mz,eq - Mz(0)) e-t/T1 

Inversion recovery to measure T1 
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dynamics: 
quantitative information 
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1H-15N T1, T2, and hetNOE measurements allow  
to deduce protein backbone flexibility 



27 

labeling strategies in big proteins 

d(1H) [ppm] 

d
(1

5
N

) 
[p

p
m

] 

uniform labeling 

selective labeling 

problems:  
• too many signals 
• broad lines due to fast relaxation 
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1H15N-TROSY-HSQC of deuterated 46kD protein 

d(1H) [ppm] 

d
(1

5
N

) 
[p

p
m

] 



28 

labeling strategies in big proteins 
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uniform 

amino-acid type specific 15N labeling 
1H-15N-HSQC 
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protonated amino acids 

in deuterated background 
1H-15N-NOESY-HSQC 
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labeling strategies in big proteins 
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I,L,V-methyl group specific 1H-13C labeling 
1H-13C-HSQC 

105Leu 

72Ile 

6Val 
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how to access this information 

• dynamic information 

protein-ligand interactions 

structural information 
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